Discontinuities Cause Essential Spectrum
نویسندگان
چکیده
We study transfer operators associated to piecewise monotone interval transformations and show that the essential spectrum is large whenever Banach space bounds $L^\infty$ transformation fails be Markov. Constructing a family of spaces we lower bound on spectral radius optimal. Indeed, these realise an as close desired theoretical best possible case.
منابع مشابه
Spectrum sensing for cognitive radio exploiting spectrum discontinuities detection
This article presents a spectrum sensing algorithm for wideband cognitive radio exploiting sensed spectrum discontinuity properties. Some work has already been investigated by wavelet approach by Giannakis et al., but in this article we investigate an algebraic framework in order to model spectrum discontinuities. The information derived at the level of these irregularities will be exploited in...
متن کاملDecomposing the Essential Spectrum
We use C∗-algebra theory to provide a new method of decomposing the essential spectra of self-adjoint and non-self-adjoint Schrödinger operators in one or more space dimensions.
متن کاملEssential Spectrum Due to Singularity
The aim of this short note is to explain important spectral phenomenon which can be observed for differential operators appearing in problems of magnetic hydrodynamics. This phenomenon are due to the nonperturbative behavior of the essential spectrum. It has been observed that the essential spectrum of a matrix differential operator on a finite interval can be different from the limit of the es...
متن کاملEssential Spectrum of the Linearized
In this note we continue the work in [SL], and give a full description of the essential spectrum for the linearized Euler operator L in dimension two. We prove that the essential spectrum of the operator is one solid vertical strip symmetric with respect to the imaginary axis. The width of the strip is determined by the maximal Lyapunov exponent Λ for the flow induced by the steady state. For c...
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2022
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-022-04531-6